The 5-enolpyruvylshikimate-3-phosphate synthase of glyphosate-tolerant soybean expressed in Escherichia coli shows no severe allergenicity.
نویسندگان
چکیده
The recombinant gene was amplified from the chromosomal DNA of genetically-modified (GM) soybeans and identified as epsps encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) which renders glyphosate resistance. The epsps structural gene was introduced in the pET28(a) plasmid for its expression in Escherichia coli BL21(DE3). It was confirmed that the maximal productivity of the EPSPS protein was achieved when cultivating the recombinant strain in a LB broth for 2 h after supplementing 1 mM isopropylbeta-D-thiogalactopyranoside (IPTG) in a 2 h-culture broth. Since the expressed EPSPS protein was found as an insoluble form in the inclusion body, it was extracted by 6 M urea after sonication, and then purified through immobilized nickel-affinity column chromatography to isolate EPSPS having a molecular mass of 57 kDa. When incubated in simulated gastric fluid containing pepsin at pH 1.5, the purified EPSPS protein was completely digested within 1 min. In addition, the passive cutaneous anaphylaxis reaction of the purified EPSPS protein was not observed in the Sprague Dawley rat system that was administered either orally or subcutaneously. Furthermore, treatment of the EPSPS protein to the culture of the sensitized peritoneal mast cells, or unsensitized but antisera-labeled mast cells, showed neither a remarkable change in the histamine release nor a cytokine production, including interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-alpha). Thus, it can be concluded that the EPSPS protein in the GM soybean showed no significant allergenicity in the Sprague Dawley rats.
منابع مشابه
Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene
Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...
متن کاملA Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants
A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evalu...
متن کاملA Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase from Rahnella aquatilis with Significantly Reduced Glyphosate Sensitivity
The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong s...
متن کاملAssessment of the endogenous allergens in glyphosate-tolerant and commercial soybean varieties.
A gene has been introduced into soybeans to confer tolerance to glyphosate, the active ingredient in the herbicide, Roundup (Monsanto Co., St. Louis, Mo.) 1,2 Soybean varieties expressing this trait will enable farmers to use Roundup herbicide within the crop during the growing season. Previous studies have confirmed the safety of the introduced protein (5-enolpyruvylshikimate-3-phosphate synth...
متن کاملIdentification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosphate synthase using a directed evolution strategy.
5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) is a key enzyme in the shikimate pathway and is targeted by the wide-spectrum herbicide glyphosate. Here, we describe the use of a selection system based on directed evolution to select glyphosate-resistant mutants of EPSPS. Using this system, the rice (Oryza sativa) EPSPS gene, mutagenized by Error-Prone polymerase chain reaction, was introdu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules and cells
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2003